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The Intermolecular Potential for Spherically Symmetrical
Molecules

SOREN TOXVAERD* and EIGIL PRESTGAARD

Chemistry Laboratory III, H. C. Qrsted Institute, University of Copenhagen,
Copenhagen, Denmark

Potential parameters for various empirical pair interaction funec-
tions have been adjusted by including in the analysis the latest
available experimental data on the second virial coefficient at low
temperatures. This confirms that the potential is deeper than the
usual Lennard-Jones 6:12 function and that three parameter poten-
tials reproduce experimental data adequately. The quantum effects
at low temperatures are determined by a direct method which in-
cludes in the curve fitting the first two terms in the diffraction expan-
sion as calculated for the Lennard-Jones potential 6:n. It is shown,
that it is possible to reproduce the second virial coefficients from
a potential having the correct values for the dipole-dipole- and dipole-
quadrupole interactions.

Expressions for the classical third virial coefficient and the first
correction terms for three body forces and quantum effects are
derived for the Lennard-Jones 6:n potential. It is confirmed that
quantum effects play a significant role.

Extensive studies in recent years of the potential energy between a pair
of simple molecules have been made both experimentally and theoretically.
The nature of the intermolecular potential is reflected most readily by the
deviation from the ideal gas law as represented by the coefficients appearing
in the virial expansion, by the scattering cross sections, and by transport
coefficients of dilute gases.

The exact functional form of the intermolecular potential between spheri-
cally symmetrical molecules cannot as yet be obtained from theoretical
calculations. However, perturbation theory, applied to large distances of
separation, gives the functional dependence of the intermolecular potential
as even powers of the distance. The first two terms, —br—¢ and —cr8, express
the induced dipole-dipole and dipole-quadrupole interaction.2® Furthermore,
the coefficient b can be accurately determined from spectroscopic data.4-¢

Even though the knowledge of the potential energy function is incomplete
for intermolecular distances, where perturbation theory is not applicable,

* Present: address: Institute for Chemistry, University of Copenhagen, Rédmansgade 71,
2200 Copenhagen N, Denmark.
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1874 TOXVARD AND PRASTGAARD

some information can be obtained from experimental data.”® It is not possible
however, to determine the functional form from the experimental data alone.
This can be seen for instance from the fact, that in the simplest case of the
second virial coefficient B, it is possible to calculate B, using different func-
tions for the potential energy to the same agreement with experimentally
obtained values. It has been assumed in the past, that accurate measurement
of the higher virial coefficients should provide the information necessary for
the determination of the functional form of the intermolecular potential.
It is now established that the effects of non additive forces are too large to
allow this to be done.!?

It is therefore necessary to introduce empirical potential functions. The
conditions to this function are, that they must allow values of physical quanti-
ties to be calculated in good agreement with experimental data. Furthermore
the functions used should be functionally as simple as possible consistent
with the requirement, that they are physically acceptable.

INTERMOLECULAR POTENTIAL FUNCTIONS

Since the inert gases obey the law of corresponding states to a fairly high
degree, it can be expected, that the intermolecular potential can be represented
by a function U*(rjr*) of the same form for all the inert gases and with only
two adjustable parameters 4 and r*:11

U(r) = AU*(r[r*) (1)

A much used potential satisfying this principle is the Lennard-Jones 12:6
function, which also gives the correct asymptotic behavior:

U(r) = 4 ¢ [(a/r)*—(o]r)*] @)

Here —¢ is the potential energy minimum value and ¢ the molecular
distance, for which the potential energy is zero. It has, however, been recognized
for a long time, that this potential fails to reproduce B, at low temperatures 12713
and, furthermore, the coefficient b in the attractive London potential is
almost twice the calculated value. The deviation between calculated and experi-
mental values of B, can be reduced by treating the power of the repulsive
potential as a parameter:

oo () () - ()]

The potential (3) is the »:6 Lennard-Jones potential. This function obeys
the law of corresponding states, only if » is the same for all the inert gases.
As shown in Table 1 computation of B, for other three parameter func-
tions than the n:6 Lennard-Jones potential confirms that it is possible to
reproduce experimental data by choosing a third parameter in addition to the
two ‘“‘corresponding state’” parameters ¢ and ¢. In the Kihara potential:

Ury=4c¢ [(Z:;Z)m — (Z:;Z)G] for r>2a @)

0 for r<2a
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INTERMOLECULAR POTENTIAL 1875

one has chosen the hard core diameter 2a as the third parameter, although
there is no physical reason to expect such a hard core for the inert gases 14716
It has, however, been assumed that the reason why the non-physical Kihara
potential reproduced the experimentally obtained virial coefficients better
than a two parameter potential is that this potential, when expanded in
powers of a/r considers attractive terms proportional to powers higher than
SiX.15_16

A simple quantum mechanical calculation of the repulsive potential
indicates an exponential behaviour.’” This is used in the exp:6 potential:

U(r) = T—-—(%T;T) [% er1—(ir,)! — (—L>_6] for r>m (5)

rm
00 for r<m

where the parameter y is introduced to take care of the small deviation from
the corresponding state. The exp:6 potential becomes equal to the potential
minimum value —¢ at the intermolecular distance r,, m is that value of r
for which eqn. (5) goes through a maximum. In addition to these functions
we have adjusted the parameters in the Sutherland- and square well potentials:

U(r) = o for r<o
— br 8 for r>¢ (6)
U(r) = for r<o
—~ & for co<r<Ro (7)
0 for Ro<r

There is excellent agreement between the B, obtained experimentally
and the one calculated for a three parameter potential, and there would be
no improvement in using more parameters in the curve fitting. Also the three
parameter function gives good value for the asymptotic br ¢ term of the
potential. This term is, however, more precisely determined by calculations
based on refractive index measurements.*® We employed this knowledge by
using the calculated value of b and adjusted ¢ and n in the %:6 Lennard-Jones
potential (3). To examine the influence of the next term —cr8 in the long
range potential we adjust @ and n in the function 7:6:8

U(r) = ar™"—brS—cr® (8)

where we used the otherwise determined values of b and ¢. For the calculation
of ¢, see Fontana.18

THE SECOND VIRIAL COEFFICIENT

The classical second virial coefficient for spherically symmetrical molecules
B,9 is given by the expression:

B, = 27,Nj.9 (1—e—UMIRT) 42 dp (9)
0
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INTERMOLECULAR POTENTIAL 1877

The parameters in the potential functions 2—8 were adjusted in the case of
Ar and Kr by fitting the calculated B,® to the experimentally obtained B,.
" For low temperatures we only used the data of Weir, Wynn Jones, Rowling-
son and Saville.!® The adjusting was performed in the usual way by the least
square criterion and minimizing the root mean square deviation (rms). Using
the new measurements we found that a few of them differed markedly from
the calculated values, and that none of the potential functions was able to
reproduce them satisfactorily, even by taking into account the first two
quantum terms in the diffraction expansion (Appendix A). We therefore
excluded all the experimental data below a certain temperature, determined
by the first appearing data which differed more than 3 rms. (For Ar data at
80°, 82°, and 84°K, for Kr at 111°, 112° 115°, and 118°K, even though the
measurement at 115°K agree with the calculated value. After a refitting based
on the remaining data we found, that the rms deviation would be doubled
by including those few points). The potential parameters determined on
the remaining data are shown in Table 1; Fig. 1 shows different potential
functions for argon using the potential parameters from Table 1.

From Table 1 it is seen, that one obtains a considerably better agree-
ment between calculations and experiments by fitting a third potential para-
meter. Furthermore, it is seen from Fig. 1, that even though the three parameter
potentials have different functional form, the adjusting of parameters in the

200
100 i~
ak .
0
x
~N
E //’_/¢
S F /
-100 / S.w.
[ Vis26
T Kihara, n:6.:8
exp.6
200 - n:6
Fig. 1. The potential energy of interaction i
between two argon atoms for Lennard-
Jones 12:6, 7:6, Kihara, 7:6:8, exp:6, 300 |Sutheriand
Square-well (S.w.), and Sutherland poten-
tials; based on B(T') data. 1 1 1 ! 1 1 1
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physically reasonable functions results in nearly the same potential. This
result is well known from older investigations based on other low temperature
data 12713

The classical expression for the second virial coefficient (9) is not sensitive
to the functional form of the potential, as can be seen from the fact, that the
square well potential (7) is able to reproduce B, as accurately as the other
three parameter functions. There is, however, reason to believe, that one can
determine the function for molecular distance r<<r,(U(r,)=—¢) from
experimental values of B,, if one knows the exact potential for r>r,.7
We have therefore used the otherwise determined -coefficients b and ¢
in the London potential and adjusted a and = in (8), hoping that, even
though the perturbation expansion is not valid in the region r=r,,
one would obtain a stronger and more correct condition to the po-
tential in the curve fitting. As seen from Table 1 the »:6:8 potential (8)
reproduces B, almost as accurately as the potentials including three
adjustable parameters. From Fig. 1 it is seen, that there is an excellent
agreement between the potential (8) and the physically acceptable three
parameter functions, especially the Kihara potential (4). (For Ar it was in
addition possible to reproduce B, by including only the first term br%, but
it results in systematic deviation for Kr). To get an idea of the influence
of the dipole-quadrupole term —cr8 in the n:6:8 potential (8) we calculated
B, for a n:6 Lennard-Jones potential using the value of @ and » in the 2:6:8
potential and found, that the dipole-quadrupole terms contributed by an
amount varying between 25 9, for the low temperatures region to 15 9, for
high temperatures. These values only show the influence of the asymptotic
term —cr78, as it appears in formula (8), where it is extended to intermolecular
separations, for which a perturbation expansion is not valid. However, the
coincidence between the three parameter potentials and the »:6:8 potential
shows that the third parameter ensures the correct asymptotic behavior
as seen most clearly in the case of the Kihara potential by an expansion in
powers of a/r.15:16

The influence of the quantum correction to the classical second virial
coefficient B, was examined by including the first two terms in the diffrac-
tion expansion (Appendix A), calculated for a 7:6 Lennard-Jones potential
(3), in the curve fitting. At low temperatures the first term contributes 2 9,
for the heavy Ar atoms, whereas it only contributes a few 9, in the case of
Kr. The second term was negligible for all temperatures, for which experimental
data exist. The adjusted parameters in the 7:6 potential (3) are shown in
Table 1.

THE THIRD VIRIAL COEFFICIENT
The assumption of a pairwise additive potential leads to the classical
expression for the third virial coefficient B;©®:
8n2N?

B0 = — 3 I : f1af 13f 287127 137 2507 12047 13d7 55 (10)

where f,=exp[—U(r;)/kT]—1.

Acta Chem. Scand. 22 (1968) No. 6



INTERMOLECULAR POTENTIAL 1879

It has, however, been verified, that the nonadditive three particle potential
U(rya, 713, To3) contributes to the third virial coefficient by a non-negligible
amount.!?:13:20 The asymptotic form of U(r,,, 713, 7s3) is known from a perturba-
tion approximation.?? Normally this contribution is expanded in a rapidly
converging series in powers of the polarisability « (the first nonvanishing
term B,»2dd) ig linear in the polarisability). The short range part of U(r,,,
ry3, Tg) and its effect on the third virial coefficient are only known
qualitatively 19,22

At low temperatures it is furthermore necessary to take care of quantum
effects. Considering only the first term in the diffraction expansion (Appendix
A) and neglecting the short range three particle potential contribution, the
third virial coefficient can be approximated by

By = By® + aBy®44)  (h2m)By» 1)

Using a n:6 Lennard-Jones potential it is possible to expand B; in a rapidly
converging series:

B3 — boz ﬁo T*—i(n—6)/n [Aa(O)T*—G/n + d_*As(n.add.)T* —1+4(3/n) +
+ (R mEK)A 0T *-1-@/n] (12)

where T* is the reduced temperature k7'[¢, by=2nNo?, a*=«/c® and K =4n?02¢.

The functional form of the coefficients 4,0, A4,02dd) gand A4, are
expressed in Appendix B. The coefficients were calculated for values of n
varying with 0.5 between 12 and 21 and for ¢ values up to 2=30.

The third virial coefficient was calculated for a n:6 Lennard-Jones potential
using the potential parameters determined from the analysis of the second
virial coefficient. The result is shown in Figs. 2 and 3.

From Fig. 2 it is seen, that the coincidence between calculated and experi-
mentally obtained data is improved by choosing a value of n=18—20 in

B3 (T*)  (cm3/molei2

~
oy
o
3000 §3000
£ m
2000 £ 2000
I . .
1000 £ 1000 I M
@Q 1 1 1 1
1 2 3 i T*

Fig. 2. The third virial cofficient B; for Fig. 3. Contributions to the third virial
argon calculated for two values (n=12 and  coefficient B,(T') for argon, calculated for
n=18) of the power in the n:6 Lennard- the 18:6 Lennard-Jones potential using the
é‘{ ones potantfi‘a,l. Th?l parameter va,llfes are parameter values determined from By(T').
etermined from the second virial coef- o o o
ficient. The experimental data are taken L By II'B}'?S.(aZii)“ Ba;(:zl'ad%)(x) I By®
from Refs. b and ¢; see Table 1. +oB, + (R m) By ).
The experimental data are taken from
Refs. b and c¢; see Table 1.
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agreement with the analysis of the second virial coefficient (see also Dymond,
Rigby and Smith 12). Fig. 3 shows the three contributions to B,.

Even though the third virial coefficient is more sensitive to the functional
form of U(r), the lack of information about the short range part of the nonaddi-
tive potential makes it impossible to predict U(r) from B,, and the accuracy
of the experimental data does not allow a determination of U(ryg, 713, 7s3),
even though U(r) was known.

CONCLUSION

Calculations of the intermolecular potential based on knowledge of B,
over a wide temperature range confirmed that the potential is deeper than
indicated by the 12:6 Lennard-Jones potential (2), since all tested three para-
meter potentials reproduce B, equally well, and those which have the correct
asymptotic behavior give the same minimum.

The calculated values of B, get better as the parameter » in (3) is increased
from 12 to 18, but this should not be taken as an indication of the steepness of
the repulsive branch of the potential. The role of n in the curve-fitting is to
adjust the potential minimum. This can clearly be seen from the fact, that
B, is reproduced equally well with n=12 as with n=18, if only data above
T|T,=1 are used.

Calculations of the first terms in the diffraction expansion for B, and B,
confirm the necessity of including quantum mechanic corrections at low tem-
peratures to the classical expression for the virial coefficients.

Acknowledgement. The authors are grateful to Prof. Thor A. Bak for his kind interest
in this work.

APPENDIX A

The deviation from the classical expression for the virial coefficients due
to quantum effects can be obtainedby means of a WKB expansion in the
intermediate temperature region.? This results in the series:

B; = B4 (B*/m)B® + . ..
For an 7:6 Lennard-Jones potential it is possible to expand the classical virial
coefficients and the quantum correction coefficients, B, in rapidly converging

series of gamma functions. (The expansion technique is described by Lennard-
Jones 2). For the second virial coefficient we found:

2N @ [n—1+(36—6n)i\( b \i[ @ \~®-D 1 6i—1)
(1) —_ — — -
By n ,21,( 48 22T )(kT kT i\

2aN =

=)
(21 10n— 9n2 4 203+ (504 — 4ddn— 1202+ 1203)i+ (9072 — 30247 -+ 252n2):2
( 23040 7A(kT)E )

b)" a \~@+mn ] r 6141
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APPENDIX B

The coefficients 4,0, A,ma3d) and A,V in the expansion (12) of the
virial coefficient for the 7:6 Lennard-Jones potential is:

A0 (5£1) = —36{(n]6)1o~9[6(n— )]}~ +0In(ni! ) ) F[6(i—1)]n]
[ dy [ o zy(<6)'cny=86-n—(o(z)yn(z)y ~86-i
0.5 1-y

—<B(y)> <nly)y ~8E-DIn—LB(a,y)> n(x,y)) ~80-Vin + <6))
4,06 = 1) =

—36(n/6)10 = *1[6](n—6)}n | dy | do ay(In(nla)<n(s)>[n) +

a~8In({n(@)){nlw,y)> [(&7"(n))) + y~¢ In(n(y)><{n(z,y)> | (y™"<n))))
Aa(n.add.) —

27[(n/[6)"*=96](n— 6)]¢r=0=3n+1(nily 1T (6 + 3)/n]
0}5 dy f dz(xy)2(3 cos0,c080,c080; - 1)(6)*(ny—Ei+3ln
. 1-y

A0 =
8(n/6)¢n—01+4/(n=6)(6(n— 6))(r=6+4in (nil)2 I'[(6i—4)/n]

}5 dy | dw ay (61 4 n—a)(6i—d)(Cnymy{ny= G- in—2{6) —(6)) —
0. 1-y

12i(6i— 4){ (n,6)(ny=Gi=Dn=1(6)1—(6) + 36i(i—1)
(€6,6)<{ny—(6i=Nin 62— (6))}
where following bracket notation has been used:

my=a"+y" +1

<a(d)y =1+ b=

{afb,e)y =b"2+ ¢

@by =<a+b+2) + 14w ?+ a2 (@P—y2 + 1) + 1/4(y-“-2 +y72).
(—a2+ g2+ 1) + Vd(amo 2y ™02 4 a2y e 2) (a2 g2

0., 6, and 0, are the inner angles of a triangle with the corresponding sides
z,y,1.
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